Geant4 Hadronic Physics Group
Work Plan for 2020

1st version, 19 February 2020
Hadronic String models (1/2)

- Include heavy hadron nuclear interactions in physics lists
 - This requires also to deal with the decays of heavy hadrons in Geant4
 - A. Ribon

- Tuning and validation of charm production for **FTF** and **QGS**
 - A. Galoyan & V. Uzhinsky

- Extension, improvement, tuning and validation of anti-baryon annihilations in the **FTF** model
 - From at rest to hundreds GeV
 - ALICE, CERN AD antiproton experiments, GAPS, Panda/GSI, etc.
 - Improve multiplicity of hyperon and anti-hyperon secondary production
 - A. Galoyan & V. Uzhinsky

- Improvement of elastic scattering for anti-baryons and light anti-nuclei
 - V. Uzhinsky
Hadronic String models (2/2)

- Review of the nuclear residual excitation energy in hadronic models
 - V. Uzhinsky

- Development and validation of a coalescence model
 - Included in G4 10.6 a first version of coalescence for nucleus-nucleus collisions: to be improved, validated and extended for hadron-nucleus interactions
 - A. Galoyan & V. Uzhinsky

- Code and hadronic shower improvements of FTF and QGS models
 - A. Ribon

- Simulation of high-energy jets in FCC-hh
 - EPOS vs. Geant4 for hadron interactions at very high energy
 - 1 – 20 TeV
 - A. Ribon in collaboration with C. Helsens, L. Goukos, V. Volkl
Intra-nuclear Cascade models

- **Bertini (BERT) model**
 - Maintenance and user-support
 - M. Kelsey, Dennis Wright
 - Collisions with light targets
 - Dennis Wright

- **Binary (BIC) model**
 - Code review and maintenance
 - G. Folger

- **Liege (INCL++) model**
 - Maintenance and user-support
 - J-C. David, D. Mancusi, J.L. Rodriguez Sanchez
 - Maintenance of ABLA++ model and improvements in the production of hypernuclei
 - J.L. Rodriguez Sanchez
Precompound / De-Excitation models

- Maintenance and code improvements
 - V. Ivanchenko, J.M. Quesada

- Complete, validate and release the new GEM model

- Tuning of evaporation probabilities
 - Special attention to α production in light fragment decay

- Add test on gamma production
 - V. Ivanchenko
Radioactive Decay model

- Maintenance and user support
 - Dennis Wright

- Maintenance of the database

- Add test in geant-val

- Add functionality of user spectrum definition for beta spectrum shape
 - L. Desorgher

- Beta-delayed particle emission

- Superheavy elements
 - L. Sarmiento
ParticleHP model

- Validation & Maintenance of ParticleHP
 - E. Mendoza & D. Cano (CIEMAT), H. Kumawat (BARC), Dennis Wright (SLAC)

- Investigate the CPU performance degradation with G4NDL4.6
- Implement an option that forces ParticleHP to respect event-by-event conservations (energy-momentum, baryonic number, etc.)
- Extend ParticleHP model to higher energies
- Implement a more detailed physics for organic neutron detectors up to 100 - 200 MeV
- Insert in G4 the NuDEX code (to generate EM de-excitation cascades)
- E. Mendoza and D. Cano
ParticleHP model (cont.)

- Document the ParticleHP database format
- Create a tool to automatically change the charged particle cross sections adding user experimental data
- P. Arce
LEND model

- Update and release new version of LEND with new GIDI interface and updated data for December release
 - B. Beck, Douglas Wright
- Validation of LEND
 - J. Verbeke
- Bug-fixing in LEND
- Validation and improvement of gamma-nuclear models
 - Dennis Wright

NCrystal model

- Add new inelastic scattering models
- Integration of the code in Geant4
 - X. Cai & T. Kittelmann
Hadron Elastic models

- Extend hadron elastic for heavy hadrons (i.e. charmed and bottom mesons and baryons) and use it in physics lists
 - V. Grichine, V. Ivanchenko

- Improvement and validation of the diffuse elastic model
 - V. Grichine

- Interface for changing easily elastic models on top of any physics list
 - Maybe coupled with a similar interface for elastic cross sections

- Extend elastic scattering validation for antiproton and light anti-ions
 - V. Ivanchenko
Other Hadronic models

- Development and validation of neutrino/lepton – nuclear physics
 - V. Grichine
- Maintenance and investigation of possible extension of QMD model
 - T. Koi
- Muonic atom physics
 - K. Lynch
- Explore the possibility of using Deep Learning to emulate a low-energy nuclear interaction model (BLOB) and to port it to GPU
 - C. Mancini
Hadronic Cross Sections

• Improvement of elementary (hadron-nucleon) cross sections
 • Make class fully static (to avoid instantiation of it many times in each thread)
 • Extend tests to pbar and gamma

• Verify and extend G4PARTICLEXS dataset
 • Evaluate data for light targets
 • Provide data for n, d, t, He3, α on p, d, t, He3, α needed for fusion
 • Add data for elastic scattering for proton and light ions
 • Add gamma cross sections

• Interface for changing easily cross sections on top of any physics list
 • Identify reliable alternatives to default hadronic cross sections
 • Allow user-defined cross section per element or per material

• V. Ivanchenko
Hadronic Validation and Testing

- Interfacing of tests 19, 23, 47, 48, 75 in geant-val
- Hadronic validation with BNL and MIPS data, and with the new high-granularity CMS test-beam
- Monitoring and documentation of physics lists with the focus on Intensity Frontier (IF) experiments
- Studying the sensitivity of the MC predictions to the variations of various parameters, with the focus on models such as FTF, BERT, Preco and development of needed infrastructure
- Validation of interfaces of Geant4 hadronic models to be used by GENIE neutrino interaction code
- FNAL Team
Other Hadronic Validation activities

- Integration of the \texttt{n_TOF} target test into the validation tool
 - M. Cortes Giraldo
- Refinement of \texttt{TARC} validation (test15)
 - A. Howard
- Validation through test-beams (e.g. CMS HGCAL test-beam)
 - A. Zaborowska
Hadronic Framework

- Complete destruction of all hadronic objects at the end of a session
 - Provide correct destruction of ParticleHP models and cross sections
 - Simplified instantiation of hadronic string models
- Modernization of hadronic builders in physics lists
 - Hadronic cross sections and instantiation of final-state hadronic models should be done separately
 - Should not use thread-local data members
 - Builders should be simple classes used only at initialization to save to write the same code
- Setting 0 verbosity in hadronics via UI command
 - As it is already the case for EM physics

V. Ivanchenko