Use of Geant4 in experiment interactive frameworks

AliRoot

I. Hrivnacova,
IPN Orsay

Geant4 Workshop, CERN
2 October 2002
Outline

- AliRoot architecture
- Virtual Monte Carlo
- Interactivity
- Present status of AliRoot
AliRoot Architecture

- **AliRoot Framework**
 - Based on ROOT
 - User code in C++
 - Usage of FORTRAN libraries
 - Geant3, event generators, “microcernlib”

- Integrates simulation, reconstruction and analysis ALICE software

- Each detector subsystem has one single package (one directory, one library)
AliRoot

Detectors:
- ITS
- TPC
- MUON
- PHOS
- PMD
- RICH
- FMD
- TOF
- TRD
- START
- ZDC

STEER:
- run management interface classes
- detector base classes
- data structure base classes

EVGEN:
- PYTHIA6
- HIJING
- ...

VMC

ROOT

External packages:

Geant4 VMC
Geant3 VMC

Geant4

Geant3
Virtual Monte Carlo

- Provides interface to Monte Carlo programs
- Decouples dependence of a user code on a concrete MC
 - Ensures to run the same user application with all supported Monte Carlo programs
- Implementation for 2 MCs available:
 - Geant3, Geant4
 - ALICE effort is now concentrated on Fluka
Virtual Monte Carlo Interfaces (1)

- **TVirtualMC**
 - Interface to Monte Carlo program
 - Generalization of Geant3 functions for definition of simulation task
 - Provides methods for definition geometry and physics setup, for access to tracked particle properties during stepping, visualization
 - Implementations: TGeant3, TGeant4
 - Are provided to a user
Virtual Monte Carlo Interfaces (2)

- **TVirtualMCApplication**
 - Interface to a user application
 - Implementation has to be done by a user
 - **Methods:**
 - ConstructGeometry()
 - InitGeometry()
 - GeneratePrimaries()
 - BeginEvent()
 - BeginPrimary()
 - PreTrack()
 - Stepping()
 - …
 - FinishEvent()
Virtual Monte Carlo

TVirtualMC Application

UserMCAplication

Concrete MC application address to MC only through the interface

TVirtualMC

TGeant4

Concrete MCs address to user MC application only through the interfaces

TGeant3
// ________________________________
void Ex01MCApplication::Construct Geometry()
{
 //------------------------------- experimental hall (world)
 Double_t expHall[3];
 expHall[0] = 300.;
 expHall[1] = 100.;
 expHall[2] = 100.;
 gMC->Gsvolu("EXPH","BOX", fImedAr, expHall, 3);

 //------------------------------- a tracker tube
 Double_t trackerTube[3];
 trackerTube[0] = 0.;
 trackerTube[1] = 60.;
 trackerTube[2] = 50.;
 gMC->Gsvolu("TRTU","TUBE", fImedAl, trackerTube, 3);

 Double_t posX = -100.;
 Double_t posY = 0.;
 Double_t posZ = 0.;
 gMC->Gspos("TRTU", 1,"EXPH",
 posX, posY, posZ, 0, "ONLY");

 // … etc
}

Run With Virtual MC

- Concrete Monte Carlo is selected and loaded dynamically at run time

- Steps:
 - aliroot
 - The main program creates the application object gAlice
 - root [0] gAlice->Init("g4Config.C");
 - Application is initialized with G4 configuration file that instantiates G4 VMC and Geant4
 - root [1] gAlice->Run();
 - Simulation run with Geant4
Geant4 VMC Limitations

- **Geant4 VMC (geometry part) is based on G3toG4**
 - G3toG4 limitations (reflections, MANY) have been minimized with Geant4 4.0
 - Limited support for “MANY” volumes positions
 - Overlapping volumes have to be specified explicitly (via G4Gsbool function)

- **A few more minor limitations**
 - None of them a real obstacle for using the VMC
Interactivity (UI)

- AliRoot UI = Root UI
- Root provides access to all objects which have been processed by CINT:
 - root [0] MyObject myObject;
 - root [0] myObject.MyFunction ();
- Geant4 classes are not processed by CINT
 - G4 objects are not accessible from AliRoot UI
- Switching between Root UI and Geant4 UI is available
Interactivity (UI)

- **Switch UI**
 - `root [0] geant4->StartGeantUI();`
 - `Idle> /mcControl/root`

- **Execute a macro**
 - `root [0] geant4->ProcessGeantMacro("myMacro.mac");`
 - `Idle> /mcControl/rootMacro myMacro`

- **Execute a command**
 - `root [0] geant4->ProcessGeantCommand("/tracking/verbose 1");`
 - `Idle> /mcControl/rootCmd TBrowser b;`
Present Status Of AliRoot Hits Production

• The ALICE background event
 - HIJING parameterization event generator
 - 5000 primary particles (5.8 % of full background event)
 - Modular physics list according to the physics list in G4 example N04 (electromagnetic and hadronic physics)
 - Included 11 detectors and all structures
 • ITS coarse geometry (due not resolved MANY)
 - The kinetic energy cuts equivalent to those in G3 were applied in G4 using a special process and user limits objects
 - Standard AliRoot magnetic field 0.2 Tesla

• Finished successfully
 - Protection against looping particles
Present Status Of AliRoot
Hits Production

- Hits for 9 (from 11) detectors
 - Missing:
 - ITS (coarse version does not produce hits)
 - RICH (requires adding own particles to the stack - not yet investigated)
- Comparisons of hits x, z distribution
- No detailed analysis
 - Need to involve detector developers
Summary

- **AliRoot simulation is based on VMC**
 - The same user code for Geant3 and Geant4 MC
 - PPR Production with Geant3
- **VMC has been defined as generalization of Geant3 functions**
 - Geant4 VMC - G3toG4 limitations
- **5000 primaries event**
 - Finishes with a success
 - Missing hits from two detectors (ITS, RICH)
- **No detailed analysis of simulated data**
 - Low interest of ALICE collaboration in Geant4
- **Effort concentrated on Fluka VMC**