Electro and gamma nuclear physics in geant4.

P. Degtyarenko, M. Kossov, J.P. Wellisch

J.P. Wellisch,
CERN/EP/SFT
Outline

- Cross-section calculations
 - The modeling, and restrictions of applicability
- Final state generation
 - The modeling, and restrictions of applicability
- Verification
Gamma nuclear reaction cross-sections

- Modeling the following regions:
 - Giant Dipole Resonance regime
 - O(100 MeV)
 - Roper regime
 - the intermediate energy ‘desert’
 - Delta regime
 - O(1-2 GeV)
 - Reggeon-pomeron regime
GDR regime

- GDR from power law (chiral invariant phase space decay prediction), and nuclear barrier reflection function.

\[
\text{GDR}(e, p, b, c, s) = T(e, b, s) \exp(c - pe)
\]

\[
T(e, b, s) = \frac{1}{1 + \exp((b - e)/s)}
\]

- Here \(e\) is \(\log(E_g)\).

- Parameters \(p, b, c, s\) are tuned on experimental data (From He to U), H and deuterium are treated as special cases.
Delta isobar region

- The delta isobar region is modeled as a Breit-Wiegner function with a production threshold:

\[\Delta(e,d,f,g,r,q) = \frac{d \cdot T(e,f,g)}{1 + r \cdot (e - q)^2} \]

- Here q can be viewed as the position of the delta resonance, and r as its inverse width.

- The parameters are tuned on before mentioned experimental data as a function of log(A).
Roper region

- This regime was parametrized using the same functional form as for the Delta region, but dropping the pion threshold factor

\[Ro(e, v, w, u) = \frac{v}{1 + w \cdot (e - u)^2} \]
In the reggeon-pomeron region, we use

\[\text{RP}(e, h) = h \cdot T(e, 7.0, 0.2) \cdot (0.0116 \cdot \exp(0.16 \cdot e) + 0.4 \cdot \exp(-0.2 \cdot e)), \]

with

\[h = A \cdot \exp(-\log(A) \cdot (0.885 + 0.0048 \cdot \log(A))) \]
Implementation restrictions:

- None.
- Details are currently being prepared for publication in a refereed journal.
Final state generation:

- Energies above 3 GeV: Kaidalov’s quark gluon string model (see talk presented by Gunter Folger).
- Energies below 3 GeV: Chiral invariant phase-space decay
Chiral Invariant Phase-space Decay.

- A quark level 3-dimensional event generator for fragmentation of excited hadronic systems (quasmons) into hadrons.
- Based on the QCD idea of asymptotic freedom
- Local chiral invariance restoration lets us consider quark partons massless, and we can integrate the invariant phase-space distribution of quark partons and quark exchange (fusion) mechanism of hadronization
- The only non-kinematical concept used is that of a temperature of the quasmon.
Vacuum CHIPS

- Or how to calculate the decay of free excited hadronic systems:

- In an infinite thermalized system of N partons with total mass M, the invariant phase-space integral is proportional to M^{2N-4}, and the statistical density of states is proportional to $e^{-M/T}$. Hence we can write the probability to find N partons with temperature T in a state with mass M as

$$dW \propto M^{2N-4} e^{-M/T} dM$$

- Note that for this distribution, the mean mass square is

$$\left\langle M^2 \right\rangle = 2N(2N - 2)T^2$$
Vacuum CHIPS

- We use this formula to calculate the number of partons in the quasmon, and obtain the parton spectrum

\[
\frac{dW}{dk} \propto \left(1 - \frac{2k}{M} \right)^{N-3}
\]

- To obtain the probability for quark fusion into hadrons, we can compute the probability to find two partons with momenta \(q \) and \(k \) with the invariant mass \(\mu \).

\[
P(k, M, \mu) = \int \left(1 - \frac{2q}{M \sqrt{1 - 2k/M}} \right)^{N-4} \times \delta \left(\mu^2 - \frac{2kq(1 - \cos \theta)}{\sqrt{1 - 2k/M}} \right) q dq d \cos \theta
\]
Vacuum CHIPS

- Using the delta function to perform the integration and the mass constraint, we find the total kinematical probability of hadronization of a parton with momentum \(k\) into a hadron with mass \(\mu\):

\[
\frac{M - 2k}{4k(N - 3)} \left(1 - \frac{\mu^2}{2kM}\right)^{N-3}
\]

- Accounting for spin and quark content of the final state hadron adds \((2s+1)\) and a combinatorial factor.

- At this level of the language, CHIPS can be applied to p-pbar annihilation.
For more information see:
Nuclear CHIPS

- In order to apply CHIPS for an excited hadronic system within nuclei, we have to add parton exchange with nuclear clusters to the model.
- The kinematical picture is, that a color neutral quasmon emits a parton, which is absorbed by a nucleon or a nuclear cluster. This results in a colored residual quasmon, and a colored compound.
- The colored compound then decays into an outgoing nuclear fragment and a ‘recoil’ quark that is incorporated by the colored quasmon.
The parton exchange diagram
Nuclear CHIPS

- Applying mechanisms analogue to vacuum CHIPS, we can write the probability of emission of a nuclear fragment with mass μ as a result of the transition of a parton with momentum k from the quasmon to a fragment with mass μ' as:

$$P(k, \mu', \mu) = \int \left(1 - \frac{2(k - \Delta)}{\mu' + k (1 - \cos \theta_{kq})} \right)^{n-3} \frac{\mu'(k - \Delta)}{2[\mu' + k (1 - \cos \theta_{kq})]^2} d \cos \theta_{kq}$$

- Here, n is the number of quark-partons in the nuclear cluster, and Δ is the covariant binding energy of the cluster, and the integral is over the angle between parton and recoil parton.
Nuclear CHIPS

- To calculate the fragment yields it is necessary to calculate the probability to find a cluster of ν nucleons within a nucleus. We do this using the following assumptions:
 - A fraction ε_1 of all nucleons is not clusterising
 - A fraction ε_2 of the nucleons in the periphery of the nucleus is clustering into two nucleon clusters
 - There is a single clusterization probability ω

- and find, with a being the number of nucleons involved in clusterization

$$P_{\nu} = \frac{C_{\nu}^a \omega^{\nu-1}}{(1 + \omega)^{a-1}}$$
Nuclear CHIPS

- At this level of the language, CHIPS can be applied to reactions of pions and photo-nuclear reactions.
A few results: For more information see:
Eur.Phys.Journal A9,411(2000) and

Fig. 7. Comparison of CHIPS model with experimental data [15] on proton and deuteron production at 90° in photoneutron reactions on 27Al and 40Ca at 59-65 MeV. Open circles and solid squares represent the experimental proton and deuteron spectra, respectively. Solid and dashed lines show the results of the corresponding CHIPS model calculation. Statistical errors in the CHIPS results are not shown and can be judged by the point-to-point variations in the lines. The comparison is absolute, using the values of total photoneutron cross-section 3.6 mb for Al and 5.4 mb for Ca, as given in ref. [16].
4 Comparison with data

We begin the comparison with the data on photon production in the 3He(γ, X) reaction at 50 and 100 MeV [13, 14]. For completeness, we reproduce these data together with the yields, normalized to the number of photons, generated in the reactions 12C(γ, X) and 3He(γ, X). The data are presented as a function of the initial incident energy.

The yield for 3He(γ, X) production at 50 MeV is reproduced qualitatively by the CHIPS event generator.

The set of measurements that are used for the benchmark comparison deals with the secondary proton yield in 12C(γ, X) reactions at 150 and 315 MeV [5], which is still below the pion production threshold, and at 150 MeV only. The CHIPS events are also compared with the 3He(γ, X) reactions at 50 and 100 MeV [13, 14]. The data are presented as a function of the incident energy.

Fig. 3. Comparison of the CHIPS model results (dashed line) with the experimental data (solid line) for the 3He(γ, X) reaction at 50 and 100 MeV.

Fig. 4. Comparison of the CHIPS model results (dashed line) with the experimental data (solid line) for the 3He(γ, X) reaction at 150 and 315 MeV.

J.P. Wellisch, CERN/EP/SFT
Electro-nuclear scattering:

reaction cross-sections

- Based on Fermi’s method of equivalent photons, as developed by Weitzsaecker and Williams:

\[
dN_\gamma = - \frac{2\alpha}{\pi} \log(y) d \log(y), \quad y = \frac{\nu}{E_e}
\]

- Folding this flux with the gamma reaction cross-section (as described above) and integrating the gamma spectrum, we obtain:

\[
\sigma(eA \rightarrow X) = \log(E_e) \int \frac{2\alpha}{\pi} \sigma_A(\nu) d \log(\nu) - \int \frac{2\alpha}{\pi} \log(\nu) \sigma_A(\nu) d \log(\nu)
\]

J.P. Wellisch,
CERN/EP/SFT
Restrictions

- The modeling assumptions in the equivalent photon spectrum.
 - The DIS part was recently added.
- To smoothen the electro-nuclear cross-section at 2 GeV, the following PR term was used

\[RP(e, h) = h \cdot (0.0116 \cdot \exp(0.16 \cdot e) + 1.0 \cdot \exp(-0.26 \cdot e)) \]
Electro-nuclear scattering: final state modeling

- The formulas presented in the cross-section section can be used to calculate the probability distribution of the equivalent photons.
- This distribution is sampled to calculate the energy transfer of the nuclear reaction.
- The energy is assumed to be transferred by gamma exchange, and the models for gamma nuclear reaction (CHIPS, QGString) are used.
Implementation restrictions

- Assumption of equivalent photon.
- Otherwise none.
 - For energy transfers below 3 GeV per collision, CHIPS is used
 - above quark gluon string model is used.
- DIS is included
Hard scattering in electro-nuclear

J.P. Wellisch,
CERN/EP/SFT
Hard scattering in electro-nuclear

\[F_2(x,650) = x(1-x)^{4.42663} \left(0.140354x^{-1.435} + 2.67944 \right) \]

ZEUS/H1 \((Q^2=650)\)
Conclusions

- Geant4 physics modeling is now equipped to deal with linear collider or Jefferson Lab radiation environment, and LHC precision gamma identification use-cases.