Mars Radiation Environment Characterization
A GEANT4 based Model

Ana Keating, A. Mohammadzadeh, P. Nieminen, H. Evans, M. Pimenta, J.-P. Huot, and E. Daly

keating@lip.pt

LIP & ESA
ESA 18121/04/NL/CH
Overview

- Radiation-induced failure of sensitive instrument, spacecraft/missions: (e.g. Marie instruments-Oct./Nov.03 and Nozomi-3 Dec. 03);
- ESA, NASA and others have flown or plan many missions to Mars
- Model features include:
 - Geant4 particle transport;
 - Time, position, solar longitude;
 - Solar cycle modulated cosmic ray and solar particle event spectra;
 - 4-D atmosphere and geology.
- Outputs: Energy and Species spectra, Fluence maps, Dose calculations
Atmospheric Database

- **European Martian Climate Database (EMCD)**
 - Temperature, density, pressure, etc
 - Stored on a 5°x5°, longitude-latitude grid from the surface to 120km
 - Vertical coordinate for the 3D variables is defined as
 \[\sigma = \frac{p}{p_0}, \]
 \[p = \text{atmospheric pressure}, \quad p_0 = \text{surface pressure}. \]
 - 12 times a day Mars Universal Time at longitude 0°;
 - 12 Martian “seasons”
 - Each season covers 30° in solar longitude (L_s)
Simulation Setup

The geometry implemented in Geant 4 program takes into account:

- 32 atmospheric layers
- Properties from EMCD
- Composition
 - 95% CO₂
 - 2.5% N₂
 - 1.25% Ar
 - 1.15% O₂
 - 0.07% CO
 - 0.03% H₂O
- Soil: Density of 3.75 g/cm³
- 30% Fe₂O₃ and 70% of SiO₂
Radiation inputs

- CREME96 for near-Earth interplanetary locations.
- Galactic cosmic rays (GCR)
 - Solar-quiet proton flux in the solar maximum
 - Simulated as isotropic momentum distribution: 10^5 protons
- Particle events (SPE)
 - Energetic protons: “worst week” model
 - Simulated perpendicularly to the surface: 10^5 protons
- Models are based on measurements at Earth (1AU)
- The phasing in the solar cycle: foreseen for ExoMars.
Olympus Mons Cliff (12h, Ls=180-210)
GCR: Radiation Environment at the Surface

At low energies:
- Neutrons
- Photons
- Electrons

At high energies (> 10^3 MeV):
- Protons

The Ions are mainly:
- Deuteron, Triton
- Alpha

Backscattering
- 60% All particles
- 96% Neutrons
SEP: Radiation Environment at the Surface

At low energies:
- Neutrons
- Photons
- Electrons

At high energies (10^2-10^3 MeV):
- Protons
- No significant signature
- Ions
- Backscattering
 - 19% All particles
 - 51% Neutrons
Tyrrhena Patreana (12h, Ls=180-210)

1-2 Km Altitude
GCR : Fluence Maps at the Surface

- Neutrons E>30MeV
- Lower Altitude
- Higher Pressure
- Higher Fluences

- Fluences \(\sim 10^7 \text{n/cm}^2 \) per year
GCR: Low Energy Neutrons

- Neutrons E< 30MeV
- Mars Universal Time
 Martian Longitude 0°:
 - 22h : 191K
 - 02h : 208K
 - 12h : 248K
- Fluences Per year
 \(\sim 10^8 \text{n/cm}^2 \)
- Temperature changes
 \(\rightarrow 1\% \)
Summary

<table>
<thead>
<tr>
<th>Input</th>
<th>Site</th>
<th>High Lights</th>
</tr>
</thead>
</table>
| GCR | Tyrrhena Patera (80E, 7.5S) | - Doses per year: <10 rad(SiO2)
- Neutron (>30MeV) : 10^7
- Neutron (<30MeV) : 10^8 |
| GCR | Olympus Mons Cliff (140W, 22.5N) | - Tot.Fluences [x10^8 #/cm2] per year :
 p = 0.3, e- = 0.1, n = 1.5, i < 0.1, γ = 1.5
- Backsc: 96% neutrons, 60% all particles |
| SEP WW| Olympus Mons Cliff (140W, 22.5N) | - Tot.Fluences [x10^8 #/cm2] per evt :
 p = 7.4, e- = 0.7, n = 3.5, i << 0.1, γ = 6.2
- Backsc: 51% neutrons, 19% all particles |
Conclusions

- Results show:
 - Energy Spectra and Particle Species at any location $5^\circ \times 5^\circ$.
 - Backscattered component: Very Important.
 - TID on the surface will probably not concern electronics
 - Proton and Neutron environments -> result in NIEL effects and in SEE.

- Methodology easily adaptable:
 - To evaluate dose equivalents and induced degradation on components;
 - To future improved knowledge of geology and atmosphere, e.g. local water ice content in the soil;
 - Direct adaptable for other planets and Moons such as Mercury and Europa
Spenuis I n er f ace

- Methodology is intended to be:
 - Publicly available in the future
 - Interfaced with Spenuis.

- Discussion is needed