Loading...
Searching...
No Matches
Public Member Functions | Private Attributes | List of all members
B01DetectorConstruction Class Reference

#include <Doxymodules_biasing.h>

Inheritance diagram for B01DetectorConstruction:
G4VUserDetectorConstruction

Public Member Functions

 B01DetectorConstruction ()
 
 ~B01DetectorConstruction ()
 
virtual G4VPhysicalVolumeConstruct ()
 
G4VIStoreCreateImportanceStore ()
 
G4VWeightWindowStoreCreateWeightWindowStore ()
 
G4String GetCellName (G4int i)
 
G4VPhysicalVolumeGetWorldVolume ()
 
void SetSensitive ()
 
virtual void ConstructSDandField ()
 

Private Attributes

std::vector< G4LogicalVolume * > fLogicalVolumeVector
 
std::vector< G4VPhysicalVolume * > fPhysicalVolumeVector
 
G4VPhysicalVolumefWorldVolume
 

Detailed Description

Definition at line 19 of file Doxymodules_biasing.h.

Constructor & Destructor Documentation

◆ B01DetectorConstruction()

B01DetectorConstruction::B01DetectorConstruction ( )

Definition at line 67 of file B01DetectorConstruction.cc.

◆ ~B01DetectorConstruction()

B01DetectorConstruction::~B01DetectorConstruction ( )

Definition at line 74 of file B01DetectorConstruction.cc.

75{
78}

Member Function Documentation

◆ Construct()

G4VPhysicalVolume * B01DetectorConstruction::Construct ( )
virtual

Definition at line 82 of file B01DetectorConstruction.cc.

83{
84 G4double pos_x;
85 G4double pos_y;
86 G4double pos_z;
87
88 G4double density, pressure, temperature;
89 G4double A;
90 G4int Z;
91
92 G4String name, symbol;
93 G4double z;
94 G4double fractionmass;
95
96 A = 1.01*g/mole;
97 G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , Z= 1, A);
98
99 A = 12.01*g/mole;
100 G4Element* elC = new G4Element(name="Carbon" ,symbol="C" , Z = 6, A);
101
102 A = 16.00*g/mole;
103 G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , Z= 8, A);
104
105 A = 22.99*g/mole;
106 G4Element* elNa = new G4Element(name="Natrium" ,symbol="Na" , Z=11 , A);
107
108 A = 200.59*g/mole;
109 G4Element* elHg = new G4Element(name="Hg" ,symbol="Hg" , Z=80, A);
110
111 A = 26.98*g/mole;
112 G4Element* elAl = new G4Element(name="Aluminium" ,symbol="Al" , Z=13, A);
113
114 A = 28.09*g/mole;
115 G4Element* elSi = new G4Element(name="Silicon", symbol="Si", Z=14, A);
116
117 A = 39.1*g/mole;
118 G4Element* elK = new G4Element(name="K" ,symbol="K" , Z=19 , A);
119
120 A = 69.72*g/mole;
121 G4Element* elCa = new G4Element(name="Calzium" ,symbol="Ca" , Z=31 , A);
122
123 A = 55.85*g/mole;
124 G4Element* elFe = new G4Element(name="Iron" ,symbol="Fe", Z=26, A);
125
126 density = universe_mean_density; //from PhysicalConstants.h
127 pressure = 3.e-18*pascal;
128 temperature = 2.73*kelvin;
129 G4Material *Galactic =
130 new G4Material(name="Galactic", z=1., A=1.01*g/mole, density,
131 kStateGas,temperature,pressure);
132
133 density = 2.03*g/cm3;
134 G4Material* Concrete = new G4Material("Concrete", density, 10);
135 Concrete->AddElement(elH , fractionmass= 0.01);
136 Concrete->AddElement(elO , fractionmass= 0.529);
137 Concrete->AddElement(elNa , fractionmass= 0.016);
138 Concrete->AddElement(elHg , fractionmass= 0.002);
139 Concrete->AddElement(elAl , fractionmass= 0.034);
140 Concrete->AddElement(elSi , fractionmass= 0.337);
141 Concrete->AddElement(elK , fractionmass= 0.013);
142 Concrete->AddElement(elCa , fractionmass= 0.044);
143 Concrete->AddElement(elFe , fractionmass= 0.014);
144 Concrete->AddElement(elC , fractionmass= 0.001);
145
146 /////////////////////////////
147 // world cylinder volume
148 ////////////////////////////
149
150 // world solid
151
152 G4double innerRadiusCylinder = 0*cm;
153 G4double outerRadiusCylinder = 100*cm;
154 G4double heightCylinder = 100*cm;
155 G4double startAngleCylinder = 0*deg;
156 G4double spanningAngleCylinder = 360*deg;
157
158 G4Tubs *worldCylinder = new G4Tubs("worldCylinder",
159 innerRadiusCylinder,
160 outerRadiusCylinder,
161 heightCylinder,
162 startAngleCylinder,
163 spanningAngleCylinder);
164
165 // logical world
166
167 G4LogicalVolume *worldCylinder_log =
168 new G4LogicalVolume(worldCylinder, Galactic, "worldCylinder_log");
169 fLogicalVolumeVector.push_back(worldCylinder_log);
170
171 name = "shieldWorld";
172 fWorldVolume = new
173 G4PVPlacement(0, G4ThreeVector(0,0,0), worldCylinder_log,
174 name, 0, false, 0);
175
177
178 // creating 18 slabs of 10 cm thick concrete
179
180 G4double innerRadiusShield = 0*cm;
181 G4double outerRadiusShield = 100*cm;
182 G4double heightShield = 5*cm;
183 G4double startAngleShield = 0*deg;
184 G4double spanningAngleShield = 360*deg;
185
186 G4Tubs *aShield = new G4Tubs("aShield",
187 innerRadiusShield,
188 outerRadiusShield,
189 heightShield,
190 startAngleShield,
191 spanningAngleShield);
192
193 // logical shield
194
195 G4LogicalVolume *aShield_log =
196 new G4LogicalVolume(aShield, Concrete, "aShield_log");
197 fLogicalVolumeVector.push_back(aShield_log);
198
199 G4VisAttributes* pShieldVis = new G4VisAttributes(G4Colour(0.0,0.0,1.0));
200 pShieldVis->SetForceSolid(true);
201 aShield_log->SetVisAttributes(pShieldVis);
202
203 // physical shields
204
205 G4int i;
206 G4double startz = -85*cm;
207 for (i=1; i<=18; i++)
208 {
209 name = GetCellName(i);
210 pos_x = 0*cm;
211 pos_y = 0*cm;
212 pos_z = startz + (i-1) * (2*heightShield);
213 G4VPhysicalVolume *pvol =
214 new G4PVPlacement(0,
215 G4ThreeVector(pos_x, pos_y, pos_z),
216 aShield_log,
217 name,
218 worldCylinder_log,
219 false,
220 i);
221 fPhysicalVolumeVector.push_back(pvol);
222 }
223
224 // filling the rest of the world volume behind the concrete with
225 // another slab which should get the same importance value
226 // or lower weight bound as the last slab
227 //
228 innerRadiusShield = 0*cm;
229 outerRadiusShield = 100*cm;
230 heightShield = 5*cm;
231 startAngleShield = 0*deg;
232 spanningAngleShield = 360*deg;
233
234 G4Tubs *aRest = new G4Tubs("Rest",
235 innerRadiusShield,
236 outerRadiusShield,
237 heightShield,
238 startAngleShield,
239 spanningAngleShield);
240
241 G4LogicalVolume *aRest_log =
242 new G4LogicalVolume(aRest, Galactic, "aRest_log");
243 fLogicalVolumeVector.push_back(aRest_log);
244 name = "rest";
245
246 pos_x = 0*cm;
247 pos_y = 0*cm;
248 pos_z = 95*cm;
249 G4VPhysicalVolume *pvol_rest =
250 new G4PVPlacement(0,
251 G4ThreeVector(pos_x, pos_y, pos_z),
252 aRest_log,
253 name,
254 worldCylinder_log,
255 false,
256 19); // i=19
257
258 fPhysicalVolumeVector.push_back(pvol_rest);
259
260 SetSensitive();
261 return fWorldVolume;
262}

◆ CreateImportanceStore()

G4VIStore * B01DetectorConstruction::CreateImportanceStore ( )

Definition at line 266 of file B01DetectorConstruction.cc.

267{
268 G4cout << " B01DetectorConstruction:: Creating Importance Store " << G4endl;
269 if (!fPhysicalVolumeVector.size())
270 {
271 G4Exception("B01DetectorConstruction::CreateImportanceStore"
272 ,"exampleB01_0001",RunMustBeAborted
273 ,"no physical volumes created yet!");
274 }
275
277
278 // creating and filling the importance store
279
280 G4IStore *istore = G4IStore::GetInstance();
281
282 G4int n = 0;
283 G4double imp =1;
284 istore->AddImportanceGeometryCell(1, *fWorldVolume);
285 for (std::vector<G4VPhysicalVolume *>::iterator
286 it = fPhysicalVolumeVector.begin();
287 it != fPhysicalVolumeVector.end() - 1; it++)
288 {
289 if (*it != fWorldVolume)
290 {
291 imp = std::pow(2., n++);
292 G4cout << "Going to assign importance: " << imp << ", to volume: "
293 << (*it)->GetName() << G4endl;
294 istore->AddImportanceGeometryCell(imp, *(*it),n);
295 }
296 }
297
298 // the remaining part pf the geometry (rest) gets the same
299 // importance as the last conrete cell
300 //
301 istore->AddImportanceGeometryCell(imp,
303
304 return istore;
305}

◆ CreateWeightWindowStore()

G4VWeightWindowStore * B01DetectorConstruction::CreateWeightWindowStore ( )

Definition at line 309 of file B01DetectorConstruction.cc.

310{
311 if (!fPhysicalVolumeVector.size())
312 {
313 G4Exception("B01DetectorConstruction::CreateWeightWindowStore"
314 ,"exampleB01_0002",RunMustBeAborted
315 ,"no physical volumes created yet!");
316 }
317
319
320 // creating and filling the weight window store
321
322 G4WeightWindowStore *wwstore = G4WeightWindowStore::GetInstance();
323
324 // create one energy region covering the energies of the problem
325 //
326 std::set<G4double, std::less<G4double> > enBounds;
327 enBounds.insert(1 * GeV);
328 wwstore->SetGeneralUpperEnergyBounds(enBounds);
329
330 G4int n = 0;
331 G4double lowerWeight =1;
332 std::vector<G4double> lowerWeights;
333
334 lowerWeights.push_back(1);
335 G4GeometryCell gWorldCell(*fWorldVolume,0);
336 wwstore->AddLowerWeights(gWorldCell, lowerWeights);
337
338 for (std::vector<G4VPhysicalVolume *>::iterator
339 it = fPhysicalVolumeVector.begin();
340 it != fPhysicalVolumeVector.end() - 1; it++)
341 {
342 if (*it != fWorldVolume)
343 {
344 lowerWeight = 1./std::pow(2., n++);
345 G4cout << "Going to assign lower weight: " << lowerWeight
346 << ", to volume: "
347 << (*it)->GetName() << G4endl;
348 G4GeometryCell gCell(*(*it),n);
349 lowerWeights.clear();
350 lowerWeights.push_back(lowerWeight);
351 wwstore->AddLowerWeights(gCell, lowerWeights);
352 }
353 }
354
355 // the remaining part pf the geometry (rest) gets the same
356 // lower weight bound as the last conrete cell
357 //
359 gRestCell(*(fPhysicalVolumeVector[fPhysicalVolumeVector.size()-1]), ++n);
360 wwstore->AddLowerWeights(gRestCell, lowerWeights);
361
362 return wwstore;
363}

◆ GetCellName()

G4String B01DetectorConstruction::GetCellName ( G4int  i)

Definition at line 367 of file B01DetectorConstruction.cc.

368{
369 std::ostringstream os;
370 os << "cell_";
371 if (i<10)
372 {
373 os << "0";
374 }
375 os << i ;
376 G4String name = os.str();
377 return name;
378}

◆ GetWorldVolume()

G4VPhysicalVolume * B01DetectorConstruction::GetWorldVolume ( )

Definition at line 380 of file B01DetectorConstruction.cc.

380 {
381 return fWorldVolume;
382}

◆ SetSensitive()

void B01DetectorConstruction::SetSensitive ( )

Definition at line 386 of file B01DetectorConstruction.cc.

386 {
387
388 // -------------------------------------------------
389 // The collection names of defined Primitives are
390 // 0 ConcreteSD/Collisions
391 // 1 ConcreteSD/CollWeight
392 // 2 ConcreteSD/Population
393 // 3 ConcreteSD/TrackEnter
394 // 4 ConcreteSD/SL
395 // 5 ConcreteSD/SLW
396 // 6 ConcreteSD/SLWE
397 // 7 ConcreteSD/SLW_V
398 // 8 ConcreteSD/SLWE_V
399 // -------------------------------------------------
400
401 // moved to ConstructSDandField() for MT compliance
402
403}

◆ ConstructSDandField()

void B01DetectorConstruction::ConstructSDandField ( )
virtual

Definition at line 407 of file B01DetectorConstruction.cc.

408{
409
410 // Sensitive Detector Manager.
411 G4SDManager* SDman = G4SDManager::GetSDMpointer();
412 // Sensitive Detector Name
413 G4String concreteSDname = "ConcreteSD";
414
415 //------------------------
416 // MultiFunctionalDetector
417 //------------------------
418 //
419 // Define MultiFunctionalDetector with name.
421 new G4MultiFunctionalDetector(concreteSDname);
422 SDman->AddNewDetector( MFDet ); // Register SD to SDManager
423
424 G4String fltName,particleName;
425 G4SDParticleFilter* neutronFilter =
426 new G4SDParticleFilter(fltName="neutronFilter", particleName="neutron");
427
428 MFDet->SetFilter(neutronFilter);
429
430 for (std::vector<G4LogicalVolume *>::iterator it =
431 fLogicalVolumeVector.begin();
432 it != fLogicalVolumeVector.end(); it++){
433 // (*it)->SetSensitiveDetector(MFDet);
434 SetSensitiveDetector((*it)->GetName(), MFDet);
435 }
436
437 G4String psName;
438 G4PSNofCollision* scorer0 = new G4PSNofCollision(psName="Collisions");
439 MFDet->RegisterPrimitive(scorer0);
440
441 G4PSNofCollision* scorer1 = new G4PSNofCollision(psName="CollWeight");
442 scorer1->Weighted(true);
443 MFDet->RegisterPrimitive(scorer1);
444
445 G4PSPopulation* scorer2 = new G4PSPopulation(psName="Population");
446 MFDet->RegisterPrimitive(scorer2);
447
448 G4PSTrackCounter* scorer3 = new G4PSTrackCounter(psName="TrackEnter"
449 ,fCurrent_In);
450 MFDet->RegisterPrimitive(scorer3);
451
452 G4PSTrackLength* scorer4 = new G4PSTrackLength(psName="SL");
453 MFDet->RegisterPrimitive(scorer4);
454
455 G4PSTrackLength* scorer5 = new G4PSTrackLength(psName="SLW");
456 scorer5->Weighted(true);
457 MFDet->RegisterPrimitive(scorer5);
458
459 G4PSTrackLength* scorer6 = new G4PSTrackLength(psName="SLWE");
460 scorer6->Weighted(true);
461 scorer6->MultiplyKineticEnergy(true);
462 MFDet->RegisterPrimitive(scorer6);
463
464 G4PSTrackLength* scorer7 = new G4PSTrackLength(psName="SLW_V");
465 scorer7->Weighted(true);
466 scorer7->DivideByVelocity(true);
467 MFDet->RegisterPrimitive(scorer7);
468
469 G4PSTrackLength* scorer8 = new G4PSTrackLength(psName="SLWE_V");
470 scorer8->Weighted(true);
471 scorer8->MultiplyKineticEnergy(true);
472 scorer8->DivideByVelocity(true);
473 MFDet->RegisterPrimitive(scorer8);
474
475}

Member Data Documentation

◆ fLogicalVolumeVector

std::vector< G4LogicalVolume * > B01DetectorConstruction::fLogicalVolumeVector
private

Definition at line 67 of file B01DetectorConstruction.hh.

◆ fPhysicalVolumeVector

std::vector< G4VPhysicalVolume * > B01DetectorConstruction::fPhysicalVolumeVector
private

Definition at line 68 of file B01DetectorConstruction.hh.

◆ fWorldVolume

G4VPhysicalVolume* B01DetectorConstruction::fWorldVolume
private

Definition at line 70 of file B01DetectorConstruction.hh.


The documentation for this class was generated from the following files:

Applications | User Support | Publications | Collaboration